Specialized Yeast Ribosomes: A Customized Tool for Selective mRNA Translation
نویسندگان
چکیده
Evidence is now accumulating that sub-populations of ribosomes - so-called specialized ribosomes - can favour the translation of subsets of mRNAs. Here we use a large collection of diploid yeast strains, each deficient in one or other copy of the set of ribosomal protein (RP) genes, to generate eukaryotic cells carrying distinct populations of altered 'specialized' ribosomes. We show by comparative protein synthesis assays that different heterologous mRNA reporters based on luciferase are preferentially translated by distinct populations of specialized ribosomes. These mRNAs include reporters carrying premature termination codons (PTC) thus allowing us to identify specialized ribosomes that alter the efficiency of translation termination leading to enhanced synthesis of the wild-type protein. This finding suggests that these strains can be used to identify novel therapeutic targets in the ribosome. To explore this further we examined the translation of the mRNA encoding the extracellular matrix protein laminin β3 (LAMB3) since a LAMB3-PTC mutant is implicated in the blistering skin disease Epidermolysis bullosa (EB). This screen identified specialized ribosomes with reduced levels of RP L35B as showing enhanced synthesis of full-length LAMB3 in cells expressing the LAMB3-PTC mutant. Importantly, the RP L35B sub-population of specialized ribosomes leave both translation of a reporter luciferase carrying a different PTC and bulk mRNA translation largely unaltered.
منابع مشابه
De novo translation initiation on membrane-bound ribosomes as a mechanism for localization of cytosolic protein mRNAs to the endoplasmic reticulum.
The specialized protein synthesis functions of the cytosol and endoplasmic reticulum compartments are conferred by the signal recognition particle (SRP) pathway, which directs the cotranslational trafficking of signal sequence-encoding mRNAs from the cytosol to the endoplasmic reticulum (ER). Although subcellular mRNA distributions largely mirror the binary pattern predicted by the SRP pathway ...
متن کاملDissecting eukaryotic translation and its control by ribosome density mapping
Translation of an mRNA is generally divided into three stages: initiation, elongation and termination. The relative rates of these steps determine both the number and position of ribosomes along the mRNA, but traditional velocity sedimentation assays for the translational status of mRNA determine only the number of bound ribosomes. We developed a procedure, termed Ribosome Density Mapping (RDM)...
متن کاملTranslation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response
Stress-induced eukaryotic translation initiation factor 2 (eIF2) alpha phosphorylation paradoxically increases translation of the metazoan activating transcription factor 4 (ATF4), activating the integrated stress response (ISR), a pro-survival gene expression program. Previous studies implicated the 5' end of the ATF4 mRNA, with its two conserved upstream ORFs (uORFs), in this translational re...
متن کاملTranslation termination and yeast prions.
Protein biosynthesis is the final step in the transfer of genetic information in the cell. In turn, its last step is the release of a nascent polypeptide from the ribosome. Therefore, termination of translation may be considered (if we do not take into account protein post-translational modification and folding) as a final step of the transition from genotype to phenotype through the classic DN...
متن کاملComputational design of orthogonal ribosomes
Orthogonal ribosomes (o-ribosomes), also known as specialized ribosomes, are able to selectively translate mRNA not recognized by host ribosomes. As a result, they are powerful tools for investigating translational regulation and probing ribosome structure. To date, efforts directed towards engineering o-ribosomes have involved random mutagenesis-based approaches. As an alternative, we present ...
متن کامل